
CASE Integration

An integration framework for a
CASE environment consists of the
basic infrastructure of architectural
and functional capabilities that allow
independent tools to be integrated in
a common environment. The com-
mon user interface gives the user a
common "look andieel" for each
tool, offering presentation inte-
gration. The integration agent pro-
vides functions that enable tools to
share data, and to communicate with
one another. The object management
sys0em represents the logical or
physical repository for the above
function. An integration framework
can help implement an Integrated
Project Support Environment (IPSE).

An IPSE is desirable because it
covers all phases of development
and support and acts as an overall
backdrop for consolidating the
activities of software development.
Though fast and inexpensive, users
and vendors must be aware of the
limits and capabilities of current
CASE tool integration frameworks
and IPSEs so their expectations are
realistic and their proposed solutions
are achievable.

The most common tool integration
issues are: which system develop-
ment phases and aitivities can bi
covered, which tool choices the
IPSE provides, where the data
resides, the type of user interfaces
the IPSE provides, how the tools
communicaten how adaptable the
approach is to new technology, and
who does the integration and sup- "

port$ it. Technologies proposed for
CASE tool integration include the
repository, the link manager, and the
message switch. Each tries to pro-
vide a public tool interface that
addresses some or all of the follow-
ing: data ipterchange, management,
and relationship management; tool
execution, cornposition, and commu-
nication; security or access control;
distribution in a network; the user
interface; and licensing.

There are technical, political, and
economic issues that surround CASE
tool integration frameworks. While
tool integration may not yet be fully
mature, it offers an important
enabling technology for the 1990s.

Source: "Perspectives on CASE tool integra-
tion," by Nicholas Wybolt, Sofiware
Engineering Notes, July 1991, pp. 56{0.

CASE MARKET

System Development, January 199

CASE [Jser's Bill of Rights
Joseph R. Schofield, Jr.

Prescription for presenters, encouraging them to
concentrate on the core issues of cAsE and its
advancement

The accelerated pace of changes in
the CASE industry places increasing
importance on the information exchang-
ed at CASE and "user" conferences.
Increasing pressure to deliver CASE-
based systems, and expand the deploy-
ment of CASE within organizations,
adds to the necessity of obtaining
valuable insights at professional gather-
ings. Given the stated changes and time
constraints, CASE conference attendees
deserve a substantial return on their in-
vestment. The following CASE user's
"Bill of Rights" offers a list of early
warning signs for conference attendees
that may help identiff presentations
where lesser value is likely to be
received. The list also serves as a
prescription for presenters that will en-
courage them to concentrate on the
core issues of CASE and its
advancement.

l. You have the right to avoid
statements of direction tht are replac-
ed, updated, or revised monthly. The
strategic nature of directional statements
precludes constant alteration. Other
ramifications are less obvious. First,
ongoing changes undermine the con-
fidence that the CASE customer seeks
from a CASE supplier. With whom is
there an alliance today? What's the
latest hearsay concerning tomorrow's
partners? What will the impact be of
the upcoming takeover or merger or at-
tempt? Second, planning in a volatile
environment requires additional thought
as the numerous likely paths to im-
plementation unfold, which forces addi-
tional contingency planning upon the
CASE user community. A preferred ap-
proach would be to provide strategic vi-
sion with real products from existing
companies, and associated delivery
dates.

2. You have the right to avoid sup-
pliers who proclaim their existence in
the CASE industry for greater than
five years. Given the emergence of
CASE and its early descriptions from
Carma McClure and others in the late
1980s, supplier credibility is greatly
reduced by attempts to substantiate their

pioneering of the CASE industry (as
they sometimes claim) for the past 10 to
20 years. While admittedly part of their
product lines are BC (Before CASE),
the tools were neither conceived nor de-
veloped with the key CASE components
in mind. A preferred approach would
be to admit to the particular niche of
the software engineering process sup-
ported, without speculating as to how
the product makes "whole" current de-
velopment techniques.

A quick review of key CASE com-
ponents (or core competencies) in-
cludes: a single encyclopedia that
'reposites' the rules to enforce a
rigorous methodology that encompasses
the entire life cycle (with due emphasis
on complete and correct code gener-
ation), integrated as a single product.
This definition preempts import and ex-
port capab,ilities to other products (to
supplement those life cycle phases
either not supported well or unsup-
ported). Import and export features in-
dicate an emphasis on interfacing rather
than integration. Further, import and
export features endorse a reliance on
terminology such as upper and lower
CASE, front- and back-end CASE (all
four imply an incomplete life cycle ap-
proach), and I-CASE (which is a
superfluous designation).

3. You have the right to avoid
announcements c onside ring future
releases thut should have been
delivered yean ago. Active observers in
CASE advancements are often disap-
pointed in the promotion of "missing
pieces products." Since such capabilities
have long been delivered by other tools
suppliers, it's difficult to determine why
suppliers would strongly promote
enhancements to their own product lines
when similar components are common
among the competition. Exuberant en-
thusiasm for overdue components raises
doubts as to whether suqh suppliers are
cognizant of CASE market needs. A
preferred approach would be t6 quietly
announce the common, while reserving
the jubilant proclamations for newly ac-
quired and unique strengths in the areas

lr



of methodology, completeness, and con-
sistency techniques.

4. You have the right to avoid pro'
prietary disclosures concenting multi'
operating system environments intend-
ed to execute on a single vendor's plat-
forms. Too much attention is focused
on attempts to provide similar "loo'k 'n
feel" across multiple operating systems.
These attempts trigger two concerns.
First, why the need for so many oper-
ating systems from a single vendor?
The support required to support the
multitude of operating systems is
necessarily a cost passed on to the
customer. Second, why not focus on the
more serious issue of cross-platform
(i.e., cross-vendor platform) CASE en-
vironments? A preferred approach
would be for hardware suppliers to col-
laborate with CASE tool suppliers
toward truly open systems Jhat would

Why the need
for so many

operating sysfe/ns
from a single vendor?

then facilitate common integration
across both tools and platforms.

5. You have the right to avoid the
introduction of more CASE products
that do not oddress the entire ffi
cycle. What tools would survive in the
CASE market if all the front-end, back-
end, upper- and lower-CASE tools were
removed from the market? The correct
answer is: "None of the above-
almost." Only the true contenders of
CASE would remain. The pretenders
would need to reference their products
as what they are-incomplete offerings.
The front- and back-end, upPer- and
lower-CASE labels intentionally
fragment the CASE market.
Unfortunately, I-CASE proponents have

had to distinguish their products from
the prevailing clutter when 'integration'
within a product set was an original
aspiration of CASE environments. A
preferred approach would be to exercise
patience and deliver life cycle-based,
integrated productivity environments as

part of Release 1.0, and avoid a

disservice to the industry and to
customers by releasing anything less.

6. You have the right to avoi.d
proponents that confuse reverse
engineering with their current re-
engineering producfs. Recognizing the
need for CASE products that assist with
the estimated 60 to 80 percent of
software budgets dedicated to current
product support is not novel. Neither is

the notion that reverse engineering, by
definition, must revert the software

product to an earlier life cycle stage.
Preferably, mature reverse engineering
would restore software to its initial
requirements level-a pr5design level.
Equally important, and far less
understood, is the need to reverse
engineer both data and processes. The
deliverance of a complete toolset for
software engineering draws discomfort
from the supplier community. Until
delivered, however, maximum
application of CASE tools is not
achievable. A preferred approach would
be to recognize the limited value of
partial reverse engineering, and
concentrate on process models. Further,
maximize organizational CASE value by
addressing new product development,
and eventually current product
engineering. In effect, this suggestion
positions CASE organizations for
reverse engineering of products
currently being developed, without
expanding the "backlog" of "to be
reverse engineered" products.

7. You have the right to avoi.d an
approach which encourages a "roll-
your-owrt methodology." A dilemma
exists for a number of CASE suppliers
today. The dilemma surfaces from an.

inconsistency in marketing strategies
emanating from equally unclear product
representations. The most blatant
example of inconsistencies sounds
something like the following: 'As
strategic partners (in the sale of a
multitude of products, which are in
varying degrees of integration, and not
quite complete), our strategy is to offer
a non-methodological approach to
software engineering. This approach
offers our client base the maximum
flexibility in defining their own
competitive strategies and platforms."
When this drivel is challenged and the
need for a methodology emphasized,
the response typically becomes: "Of
course you realize that our original
product contained the name of what we
believe to be a preferred methodology,
and through some of our other
partnerships we still support the
methodological rigor you need to build
quality systems." This second response
is the legitimate response for serious
software engineers; but hearing it as a
contingency plan somehow undermines
the integrity of the supplier and the
product. A preferred approach would be
to recognize that the methodology is the
heart of a CASE tool; a primary source
of productivity and quality improvement
opportunities.

An even more irritating dilemma
surrounds methodology adherence. This
second dilemma is the provision that
ailows the purchaser to build a method-

ology (which sometimes translates into
implementation of the existing method-
ology in use). Application of this
flexibility by potential CASE engineers
will not facilitate any transformation
leading to true process improvement. In
effect, this approach automates that
which does not work, and accelerates
defects. The current environment does
not work because the rules for
completeness and consistency cannot be
added to a methodology-the rules are
the essence of the methodology. Too
often, software engineers attempt to test
quality into the final product-well
beyond the requirements and design
phases where specifications need to first
be validated. Several authors have
documented the economy of defect
detection early in the life cycle. A
preferred approach would be to avoid
any CASE supplier who entrusts the
purchaser with finishing the methodolo-
gy. Few software engineers are
knowledgeable enough, in all life cycle
phase aspects, to construct their own
methodology.

8. You have the right to avoi.d
messages that describe the CASE
payoff in two to four yeqrs. Sometimes
this ploy is cleverly disguised as,
"CASE will pay for itself in the mainte-
nance phase." Review the ongoing
turmoil in the CASE industry.
Conceivably, a number of suppliers

Avoid any CASE
supplier who enfrusfs

the purchaser
with finishing

the methodology.

making these promises will not exist in
two to four years. Investors in CASE
technology deserve noticeable and
measurable process improvements on
their initial project. Despite the
reported "steep learning curve" using
robust CASE products, productivity
gains are obtainable. On the contrary, if
enough CASE suppliers continue to
devalue productivity in first generation
CASE pr.oducts, success stories will
become increasingly more difficult to
substantiate, and equally difficult to
motivate. A preferred approach is to
expect the best, including introductory
benefits that have an immediate impact
on productivity and quality.

9. You have the right to avoid
unprepared presenters. These
presentations usually begin with one of
two excuses. First, their presentation
was not completed far enough in
advance for their handouts to be

o

System Development, January 199



published with the proceedings. In-
evitably, these are the same folks who
also did not make enough copies for at-
tendees. Nevertheless, the interested
parties' business card, left on the table,
will suffice as a request for materials
which will be mailed promptly upon
return to the office. Be cautious that the
lack of planning is not disguised as
'turrent information." Buyer beware!

Second, because the presented
materials are so current, the audience
will not have most of the presented
materials in the pre-published pro-
ceedings. In marketing, this technique is
referred to as "bait 'n switch," and is
often illegal. The underlying fraud re-
mains the same as for the first excuse.
Find another session if the presenter is
incapable of incorporating up-to-the-
minute announcements with a well-
prepared topical discussion. A preferred
approach would be to,measure the ex-
tent of change and avoid presenters who
have a history of altering greater than
20 percent of their materials. A
disorganized presenter does not repre-
sent the espoused techniques, strategies,
or product very well.

10. I-ast$, you have the right to
avoid and be most careful of the illu-
sion that the usage of the phrase
"open architecture" implies ',ac-
cessibility " rather than "standardizn-
tion." CASE supports structure. CASE
requires rigor. Software engineering
supports structure. Software engineering
requires rigor. CASE is software
engineering for the 1990s. Its value
rests upon a foundation of standards;
not loosely defined concepts. A prefer-
red approach would be to require tools,
not just strategies; techniques, not just
concepts; standards, not just open
architectures.

The preceding text has described
many essentials of CASE, why they are
important, and why their quest is wor-
thwhile. These descriptions prescribe a
suggested platform for meaningful
CASE presentations for future con-
ferences, symposiums, and seminars. In
addition, specific recommendations are
offered to improve the content and
representation of CASE products and
approaches. Presenters take note-your
audience has high expectations for-the
technology and how it's promoted.

Joseph R. Schofield, Jr. has actively
worked in a CASE environment for five
years, teaches groduate classes in anal-
ysis and design at the College of Santa
Fe, has mnde numerous presentations at
industry conferences, and has authored
several articles in information systems
trade journals.

System Development, January 199

I've taught a lot of seminars over the
years.

My favorite part of a seminar is the
interaction with my attendees. I love in-
teraction, and I encourage it. I've even
been known to toss out an ',outrageous
bias" or two, just to stir the attendees
up a little and get them to put words to
an opposing view. In this software field
of ours, less than half a century old,
we are still exploring what the correct
answers are to a lot of important ques-
tions. And only if people are willing
and able to express their beliefs and
opinions will we be able to sort out
conflicting views and begin to identify
Truth.

So it was a special pleasure for me
when one group of seminar attendees
actually took over the seminar and
steered it in some new directions!
I had come armed with several days'
worth of lecture notes, as usual, but I
was only part way into the first day
when I realized that the group was
ready and able to charge off somewhere
else!

So off we went. It started when I
set up a workshop exercise, g&Ve
the attendees a problem definition,
and asked them to explore what the
design process was for the problem in
question.

The problem definition contained
an intentionally impossible schedule.
What I thought would happen was
that the attendees would solve the
problem, ignoring the schedule
constraint.

I was very wrong. Almost to a per-
son, the attendees did whatever they did
within the impossible schedule I had
established for them.

That fact was worth exploring in the
seminar, I thought. And as we dis-
cussed what had happened, the discus-
sion took some more unexpected turns.

First, why had the attendees stayed
with the schedule? Because, they said,
that's the way it is in software develop-
ment these days. Schedule conformance
is the most important goal to strive for,
and management grades you on how

SOFTWARE REFLECTIONS

Lying to Management
Robert L. Glass

Ethics may occasionally be ignored for the sake of getting
the job done

well you do. Regardless of what it
means to the quality of the final
product.

From there, the conversation took an
even more surprising turn. We started
talking about "lying to management."
And I don't know whether this par-
ticular group is typical or not, but
what I learned at that mid-afternoon,
unplanned bull session scared my socks
off.

Here are some quotes:
o A middle manager said, "I have to

lie 30 to 50 percent of tne time in
order to get my work done." He went
on: "f had to check my ethics at the
door when I went to work here."

o A consultant said, "I make wildly
optimistic promises to get management
off my back."

o A group leader said, "Lying gets
me resources I wouldn't otherwise get.

"l had to check
my ethics

at the door
when I went

to work here."

I invent fictional projects and attach key
people to them in order to hold onto
them."

o A high-level manager said, "If it's
easy to get caught you don't lie." He
went on, "I'm an honest person, but
my honesty has gotten me in trouble
sometimes because people don't'want to
hear the truth." And then, "Managers
who don't tolerate failure I especially
lie to."

o A consultant said, 'At the
company where I'm working, the fixer
is the hero. A lot of things end up
needing fixing there."

The consensus, in this rapid-fire
conversation, seemed to be that nearly
everybody lied to management. Most of
the lies, someone pointed out, were
"white lies" rather than black ones.
When pressed for a distinction, he said
that black lies "were those where one
said .,{ when 'B' was demonstrably


