

Life Cycle-Based Defect Removal with Capture Recapture Method

April 22, 2008

Joe Schofield

Distinguished Member of the Technical Staff
Sandia National Laboratories

joescho@joejr.com

Michael Milutis

Director of Marketing
Computer Aid, Inc. (CAI)
Michael_milutis@compaid.com

About Presenter's Firm

Since 1949, Sandia National Laboratories has developed science-based technologies that support our national security. Today, the nearly 300 million Americans depend on Sandia's technology solutions to solve national and global threats to peace and freedom.

Sandia is a government-owned contractor operated (GOCO) facility. Sandia Corporation, a Lockheed Martin company, manages Sandia for the U.S. Department of Energy's National Nuclear Security Administration.

About Computer Aid, Inc. (CAI)

- **CAI** is a global IT outsourcing firm currently managing active engagements with over 100 Fortune 1,000 companies and government agencies around the world.
- CAI is a leader in IT Best Practices for legacy support and new development application management.
- CAI's focus is directed toward practical implementations that track and measure the right activities in software activity management
- CAI consistently promises and delivers double digit productivity in its outsourcing and consulting engagements.
- CAI makes all of this possible through the use of:
 - Standard processes
 - Management by metrics
 - SLA compliance management
 - Detailed cost, resource, and time tracking
 - Capacity management
 - Standard estimation
 - A unique, metrics based methodology along with a proprietary, real time data repository and management system (TRACER®).

Life Cycle-Based Defect Removal with Capture Recapture Method

Joseph R. Schofield
Sandia National Laboratories

What's the point?

- Software defects still plenty abundant
- Software and product quality still plenty to talk about
- Inspections / Peer Reviews still underutilized
- Asking the tough questions still plenty of non answers
- Capture Recapture Method still plenty (defects) to find

What this webinar is not about:

- Major versus minor defect classifications (and holy wars)
- Peer reviews versus inspections (and holy wars)
- Which statistical package to use to evaluate defect data (and holy wars)
- Defect classifications (and holy wars)
- How to conduct inspections (and holy wars)
- Inspection ground rules (and holy wars)
- Thresholds for successful reviews / inspections
- How to write better test plans
- Who to blame
- How to perform root cause analysis
- Roles on inspections / peer reviews
- How to write review scripts
- How to classify defects and track items to closure

Let's Raise the Discomfort Level Early

- Software quality problems result from defective products and defective usage.
- Many root causes of poor product quality and poor usage exist.
- Our focus today is on the impact of software quality that results from defective product.
- Software defects are injected by product developers.
- Even trained and experienced developers inject defects
- Too often, a quality assurance group is assembled to remove defects from products.
- Too often, a quality assurance group is chartered to develop comprehensive testing activities to reduce defects.
- Many product defects exist in the requirements and design of the product; they cannot be removed during testing because they have become part of the product specification.
- An increasing reliance solely on testing for defect removal will not address defects that emanate from requirements and design (but it will show lots of "activity" and require lots of resources)!
- Even experienced developers inject one defect per every ten instructions of code that are written. (get a source)

Recent Examples of Defects

Marriott – Social security and credit card numbers of 200,000+ employees and customers missing

 Ford – 70,000 employee and former employee social security numbers on a stolen computer

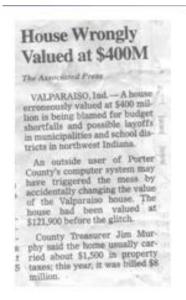
 Sam's Club – 600 customer credit card data stolen in two weeks

 Justice Department – posted social security numbers and personal data of persons involved in "cases" on its web site

More Recent Examples of Defects

 TJ Maxx reported information from 45 million credit cards stolen. informationweek; April 2, 2007

TJX credit card thief ordered to pay ~ \$600,000 and serve five years in prison. Original thieves have not been caught. About \$3M is losses is known to have occurred from this crime. *informationweek; September 17, 2007*


TJX data breach may involve 94 million credit cards USA Today; October 25, 2007

 MGM – Computer glitch slows MGM Mirage check-ins Workers resorted to manual check-in for thousands of guests

"glitch" hits seven hotels – five on the LV strip "first time" this "bug" has surfaced

Las Vegas Review-Journal; October 24, 2007

And more . . .

Software defects cost the U.S. \$59.6B a year¹

38 percent of polled organizations have no SQA program²

Software technicians in Panama are charged with second degree murder after 27 patients received overdoses of gamma rays; 21 have died in 40 months³ BMW, DaimlerChrysler, Mitsubishi, and Volvo experience product malfunctions (engine stalls, gauges not illuminated, wiping intervals, wrong transmission gears) due to software⁴

In the year 2000, the nctimes placed the cost of one virus at \$10B⁵ After more than two years of delay, the state Department of Labor's \$13M million computer system to process unemployment insurance claims and checks still isn't fully off the ground⁶

- 1 Informationweek, Behind the Numbers, March 29, 2004; pg 94
- 2 CIO, By the Numbers, December 1, 2003, pg 28
- 3 Baseline The Project Management Center, We Did Nothing Wrong, March 4, 2004
- 4 Informationweek, Software Quality, March 15, 2004; pg 56
- 5 www.nctimes.com/news/050600/d.html
- 6 Albuquerque Journal; Computer A Real Labor For State; 6/04

Reference: *Applying Lean Six Sigma to Software Engineering*; International Function Point Users Group; Schofield; September, 2004

Sample defect types:

Completeness – Does it exist in its intended entirety?

- Are all the expected elements present?
- Is each element detailed to the level prescribed by the process?

Correctness – is it right?

- Does this item (process or information) do what was intended?
- If an element is wrong, treat it as incorrect

Consistency – is it used one way and the same way throughout the product and its interfaces?

- Is this process performed somewhere else and called something different? (Two programs or codes that perform the same function.)
- Is this information represented somewhere else or presented in some other way? (A date presented in different formats).
- Is an element duplicated in function or form, or if an element does not map to an ancestral artifact but should, treat it as inconsistent.

Conciseness - is it lean?

- Does it do more than intended?
- Is it larger than necessary?

Inspections – A response (almost 40 years old!)

- Developed by IBM in 1972 after three years of experimentation
- Referred to as a "Fagan inspection," or "formal inspection"
- An expectation of formal inspection is to reduce rework (a lean six sigma source of "waste" / muda)
- Not intended as a substitute for testing
- Enhanced to include causal analysis activity for defect prevention (a CMMI® Maturity Level 5 Process Area)

Why Inspect Product?

- Eliminate the undesired
- Identify what's missing
- Determine if products fulfills intent
- Validate the verification process: value, efficiency, ROI
- Uncover process improvements
- Establish and sustain customer confidence

Assertions regarding defects

- The sooner a defect is detected (and removed) the lower the cost of repair and rework
- The later a defect is detected (and removed) the greater the consequence to cost and the impact to schedule
- Defect removal late in a project heighten risks related to quality, delivery, and satisfaction
- Verification (by the supplier) and validation (by the customer) are the two means for identifying defects
- Defect discovery through verification is preferred (consider who and when)
- Therefore, some verification (confirmed by defect injection and detection data) may be needed as part of the development (or modification) of each product artifact

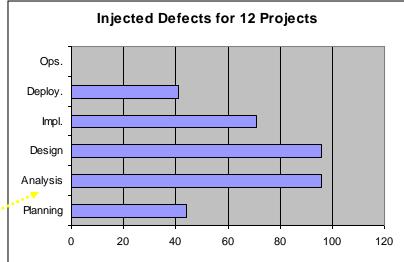
More assertions regarding defects

- All stakeholders related to a product from upper management to the final builder are likely to inject defects. We all need to admit that we are recovering defect injectors.
- Sources of defect removal include: personal reviews, inspections and peer reviews, testing, and customer change requests
- We need to collect data from all defect removal activities if we want to eliminate defects from products
- Defects found in testing evidence potential process or process execution failure; until resolved we can only guarantee more defects in the future

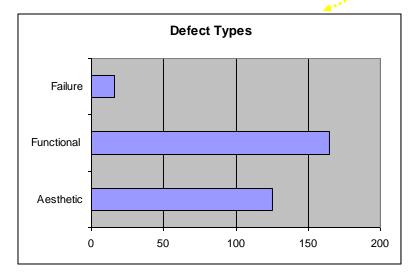
And more . . .

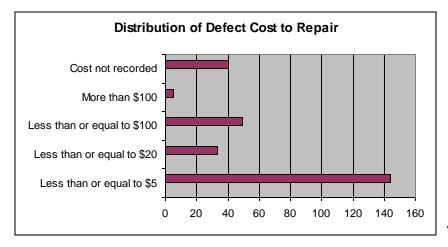
- Only ½ of the defects in a product are removed by testing; this limitation is not a reflection on the testing process
- An organization's equivalent defect-related data is better than that of other organizations. The same is true of a project. The same is true for a person.
- Lessons learned from inspections, peer reviews, test results, and change requests should trigger needed process changes to eliminate the source of defects.
- Lessons learned from individuals should be shared with the team. Lessons learned with the team should be shared with the organization. The opposite flow exchanges should also occur: organization-to-team-to-individual.
- An inspection or peer review should be pre-requisite to the completion of the deliverable (in software engineering this is much more than the code)
- Inspections and peer reviews reduce the TCO of products
- An inverse relationship exists between quality and defect density

How well do you know your products?



- In what work product (or sub-assemblies) do we inject the most defects?
- What is the estimate of how many defects are typically found in a product like this, using a review like this?
- In what verification activity do we detect the most defects?
- What is the average cost to repair a defect?
- What's the most we ever spent on rework related to a defect?
- What are the types of defects we are most likely to find by work product?
- What steps have been taken to eliminate the source of defects, and what was the measured result of that action?
- What training and organizational assets exist to assist new team members with verification activities?
- What is the return on investment for verification activities; that is, what does
 it cost to perform them and what would it cost if the product was released
 with those defects?
- How many more defects remain undetected in the product?




Attribute	Value	
Discovered By	Change Request Peer Review Item	¥
Detection Phase	Planning	
njection Phase	Planning	
Defect Type	Completeness	
Defect Severity	Aesthetic 🔽	
Cost to Repair		
Description/Class		
Disposition		
210p03id0ff	to weak classed entitled	

Measure / Record

Analyze

Modify or Input Defects

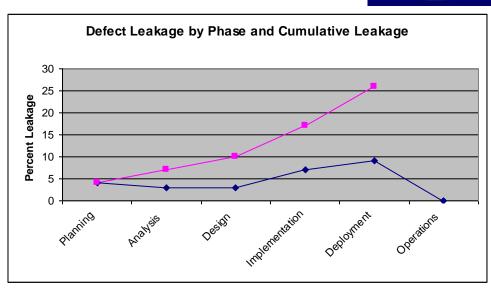
SILC Review Phase	Discovered By	Defect Type	Total Defects	Total Cost	Cost Per Defect
Planning	Change Request	Completeness	20	707	35.35
Planning	Peer Review	Completeness	91	3867	42.49
Planning	Peer Review	Consistency	21	667	31.76
Planning	Peer Review	Corrective	33	1481	44.88
Planning Planning Planning Planning Planning Planning Analysis Analysis Analysis Analysis Design	Test Plan	Completeness	1	4	4.00
Anal si	Change Request	Completeness	6	180	30.00
Analysis	Change Request	Corrective	6	60	10.00
Analysis	Peer Review 🗼	Completeness	124	2900	23.39
Analysis	Peer Review	Consistency	103	1968	19.11
Analysis	Reer Review	Corrective	109	1890	17.34
Design	Cloning Request	Completeness	3	160	53.33
Design	Chang Request	Corrective	4	170	42.50
Design	Feer Review	Completeness	265	7406	27.95
Design	Peer Cojew	onsistency	59	1313	22.25
Design	Peer Review 2	prective	162	2054	12.68
Design	Test Plan	Complete hess	2	8	4.00
Design	Test Plan	Consistency	1	6	6.00
Design	Test Plan	Corrective	4	124	31.00
Implementation	Change Request	Completeness	2	80	40.00
Implementation	Change Request	Corrective	8	1337	167.13
Implementation	Peer Review	Completeness	63	2125	33.73
Implementation	Peer Review	Consistency	55	1909	34.71
Implementation	Peer Review	Corrective	76	2572	33.84
Implementation	Test Plan	Completeness	36	3801	105.58
mplementation	Test Plan	Consistency	15	1146	76.40
Implementation	Test Plan	Corrective	85	3151	37.07
Deployment	Change Request	Corrective	4	67	16.75
Deployment	Peer Review	Completeness	29	200	6.90
Deployment	Peer Review	Consistency	1	4	4.00
Deployment	Peer Review	Corrective	7	38	5.43
Operational	Change Request	Completeness	5	408	81.60
Operational	Change Request	Consistency	4	195	48.75
Operational	Change Request	Corrective	12	1215	101.25
Operational	Test Plan	Corrective	11	1319	119.91

Artifact Reviewed	Total Defects	Total Cost	Cost Per Defect
External Interfaces Definition	94	1612	17.15
Information Model	57	525	9.21
Internal Components Definition	67	1507	22.49
Other: Business Rules	5	13	2.60
Other: Business Rules Other: Business Rules and Use Cases Other: CSA Administrator Documentation Other: CSA User Documentation Other: EP Interim Solution: Source Code Other: External Interfaces Definition - Admin Other: External Interfaces Definition - Reporting Other: External Interfaces Definition - Wizard Other: Information Model. Data Dictionary Other: Interim Solution Test Plan	33	122	3.70
Other: CSA Administrator Documentation	2	20	10.00
Other: CSA User Documentation	2	20	10.00
Other: EP Interim Solution: Source Code	13	308	23.69
Other: External Interfaces Definition - Admin	5	9	1.80
Other: External Interfaces Definition - Reporting	Work	29	3.22
Other: External Interfaces Definition - Wizard	4	47	11.75
Other: Information Model. Data Dictionary	7	22	3.14
Other: Interim Solution Test Plan	6	159	26.50
Other: Internal Components DefinitionAdmin	1	1	1.00
Other: Internal Components DefinitionCourse	6	266	44.33
Other: RS2 User Process Model	5	70	14.00
Other: RS3 SW Requirements & Design Specification	1	50	50.00
Other: RS3 Software Source Code & Executables	5	610	122.00
Other: RS3 User Process Model	8	165	20.63
Other: RS5 User Process Model	4	14	3.50
Other: RS6 User Process Model	7	300	42.86
Other: RS7 Design	7	200	28.57
Other: RS7 Software Source Code & Executables	3	40	13.33
Other: RS7 User Process Model	8	135	16.88
Other: Software Requirements Specification	27	470	17.41
Other: Test Plan, Information Model, External Interfaces	25	134	5.36
Other: Use Case Diagrams & Textual Use Cases	1	2	2.00
Other: Use Case Model	3	7	2.33
Other: User Documentation	17	101	5.94
Project Plan	129	4005	31.05
Software Source Code & Executables	139	4561	32.81
Test Plan	209	3774	18.06
User Process Model	132	5641	42.73

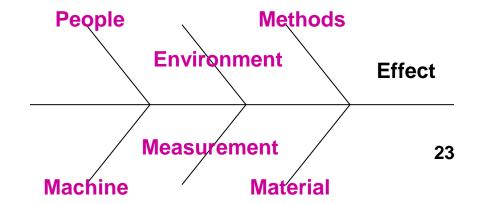
For defect removal, Tom Glib reports some inspection efficiencies as high as 88 percent. Jones, *Software Quality*, pg 215

Phase Injected

		Planning	Analysis	Design	Impl.	Deploy.	Ops.
	Planning	109	4	8	8		
	Analysis	1	290	2			
	Design	3	9	476	2		
	Imple.	1	1	13	296		
1	Deploy.				1	20	
	Ops.			3	24	2	30
	Total Injected	114	304	502	331	22	30
	% leakage	4	3	3	7	9	

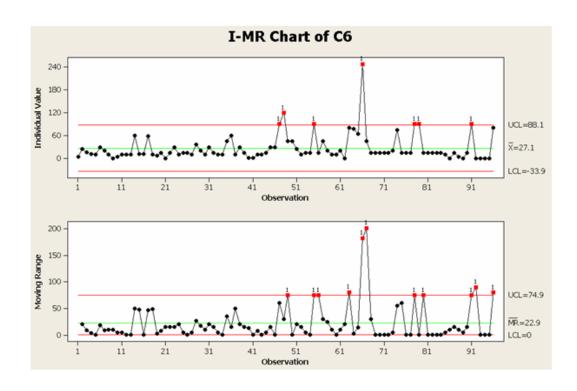

Phase Detected

What does this association matrix REVEAL?



Given:

- Peer Review is performed in Planning
- Peer Reviews are performed in Analysis
- Peer Reviews are performed in Design
- How is it that so many defects are removed in Implementation?
- Does the organization need more Peer Reviews in Planning & Analysis?
- How effective are Design Peer Reviews?



Look at Planning & Analysis

Some answers – measurement collection and analysis / higher level maturity (cont'd)

Special (Assignable) Cause removal required at CMMI® Level 4

How many more defects remain undetected in the product?

Barry Boehm – requirements defects that made their way into the field could cost 50-200 times as much to correct as defects that were corrected close to the point of creation.¹ The U.S. space program had two high-profile failures in 1999 with software defects that cost hundreds of millions of dollars.

Capers Jones – reworking defective requirements, design, and code typically consumes 40 to 50 percent or more of the total cost of most software projects and is the single largest cost driver.²

Tom Gilb – half of all defects usually exist at design time³, (confirmed by Jones's data).

Capers Jones – as a rule of thumb, every hour you spend on technical reviews upstream will reduce your total defect repair time from three to ten hours.⁴

O'Neill calculated the ROI for software inspections between four and eight to one.5

^{1.} Boehm, Barry W. and Philip N. Papaccio. "Understanding and Controlling Software Costs," *IEEE Transactions on Software Engineering*, v. 14, no. 10, October 1988, pp. 1462-1477.

^{2.} Jones, Capers. Estimating Software Costs, New York: McGraw-Hill, 1998.

^{3.} Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: Addison-Wesley, 1988.

^{4.} Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs, N.J.: Yourdon Press, 1994.

^{5.} O'Neill, Don; National Software Quality Experiment: Results 1992 – 1999: Software Technology Conference, Salt Lake City, 1995, 1996, 2000

An answer to the last question

How many more defects remain in the product? (Latent defect estimation)

Place a check mark in the intersecting cells for each defect found by each participant.

Count the defects that each engineer found (Counts for Engineer A, B, and C).

Column A: check and count all the defects found by the engineer who found the most unique defects. 5

Column B: check and count all of the defects found by all of the other engineers. 4

Column C: check and count the defects common to columns A and B. 2

The estimated number of defects in the product is AB/C. Round to the nearest integer. (5 * 4) / 2 = 10

The number of defects found in the inspection is A+B-C. 5 + 4 - 2 = 7

The estimated number of defects remaining is the estimated number of defects in the product minus the number found. (AB/C) – (A+B-C). 10-7=3

Use team "thresholds" to determine whether or not to repeat the Peer Review.

Defect No	Engineer Larry	Engineer Curly	Engineer Moe	"Column A"	"Column B"	"Column C"
1	√			$\sqrt{}$		
2	√			$\sqrt{}$		
3			$\sqrt{}$		$\sqrt{}$	
4	√	V		$\sqrt{}$	$\sqrt{}$	V
5	\checkmark			$\sqrt{}$		
6	√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V
7		V			V	
Counts	5	2	2	5	4	2

What if . . .

Two engineers find the most defects? (pick either for column A and complete the process)

Place a check mark in the intersecting cells for each defect found by each participant.

Count the defects that each engineer found (Counts for Engineer A, B, and C).

Column A: check and count all the defects found by the engineer who found the most unique defects. 5

Column B: check and count all of the defects found by all of the other engineers. 7

Column C: check and count the defects common to columns A and B. 3

The estimated number of defects in the product is AB/C. Round to the nearest integer. (5 * 7) / 3 = 12

The number of defects found in the inspection is A+B-C. 5 + 7 - 3 = 9

The estimated number of defects remaining is the estimated number of defects in the product minus the number found. (AB/C) – (A+B-C). 12-9=3

Defect No	Engineer Larry	Engineer Curly	Engineer Moe	"Column A"	"Column B"	"Column C"
1	√	V		$\sqrt{}$	V	√
2	V			$\sqrt{}$		
3		V	V		√	
4	√	V		$\sqrt{}$	√	V
5	√			$\sqrt{}$		
6	√	V	V	$\sqrt{}$	V	V
7		$\sqrt{}$			√	
Counts (L)	5	5	2	5	5	3
Counts (C)	5	5	2	5	6	4

What if . . .

Hardly any mutual defect finds?

Place a check mark in the intersecting cells for each defect found by each participant.

Count the defects that each engineer found (Counts for Engineer A, B, and C).

Column A: check and count all the defects found by the engineer who found the most unique defects. 4

Column B: check and count all of the defects found by all of the other engineers. 4

Column C: check and count the defects common to columns A and B. 1

The estimated number of defects in the product is AB/C. Round to the nearest integer. (4*4)/1 = 16

The number of defects found in the inspection is A+B-C. 4+4-1=7

The estimated number of defects remaining is the estimated number of defects in the product minus the number found. (AB/C) – (A+B-C). 16-7=9

Defect No	Engineer Larry	Engineer Curly	Engineer Moe	"Column A"	"Column B"	"Column C"
1	√			√		
2	√			√		
3		$\sqrt{}$			$\sqrt{}$	
4	√	V		√	√	√
5			$\sqrt{}$		$\sqrt{}$	
6	$\sqrt{}$			$\sqrt{}$		
7		√ √			√ √	
Counts (L)	4	3	1	4	4	1

Questions?

CAI Sponsors The IT Metrics Productivity Institute:

Clearinghouse repository of best practices:

WWW.ITMPI.ORG

Weekly educational newsletter:

WWW.ITMPI.ORG / SUBSCRIBE

Weekly webinars hosted by industry leaders:

WWW.ITMPI.ORG / WEBINARS

Software Best Practices Conferences Around the World

Spring	2008	Dates	and	Locations
--------	------	-------	-----	-----------

Fall 2008 Dates and Locations

Mar. 4	Tampa, FL	Sept. 9	Jacksonville, FL
Mar. 11	Pittsburgh, PA	Sept. 25	London, UK
Mar. 27	Orlando, FL	Oct. 2	Toronto, ON
Apr. 3	Toronto, ON	Oct. 7	Albany, NY
Apr. 8	Princeton, NJ	Oct. 14	Cleveland, OH
•	•	Oct. 16	Detroit, MI
Apr. 10	Washington, DC	Oct. 21	Chicago, IL
Apr. 15	Detroit, MI	Oct. 23	Milwaukee, WI
Apr. 24	Albany, NY	Oct. 28	Washington, DC
May 6	Olympia, WA	Oct. 30	New York, NY
May 15	Rochester, NY	Nov. 4	Annapolis, MD
May 20	New York, NY	Nov. 6	Philadelphia, PA
May 22	Philadelphia, PA	Nov. 13	Baton Rouge, LA
June 3	San Antonio, TX	Nov. 20	Ft. Lauderdale, FL

Joe Schofield

Distinguished Member of the Technical Staff
Sandia National Laboratories

joescho@joejr.com

Michael Milutis

Director of Marketing
Computer Aid, Inc. (CAI)
Michael_milutis@compaid.com