
Latent Defect Estimation –
Maturing Beyond Defect Removal
using Capture-Recapture Method

Joe Schofield

Sandia National Laboratories

Albuquerque, N. M.

505 844-7977

jrschof@sandia.gov

Software Assurance Workshop

Security-Enhanced Quality Assurance, Testing and Project
Management

September 9th, 2008 QAAM - Baltimore, MD

3

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Latent Defect Estimation –
Maturing Beyond Defect Removal
using Capture-Recapture Method

Joseph R. Schofield

Sandia National Laboratories

4

About Sandia National Laboratories

Since 1949, Sandia National Laboratories has developed science-based
technologies that support our national security. Today, the nearly 300 million
Americans depend on Sandia's technology solutions to solve national and
global threats to peace and freedom.

Sandia is a government-owned contractor operated (GOCO) facility. Sandia
Corporation, a Lockheed Martin company, manages Sandia for the U.S.
Department of Energy's National Nuclear Security Administration.

5

Abstract (an abbreviated summary of any in-depth analysis of a particular
subject or discipline) wikipedia

• Statistical sampling techniques for populations in biology
can be easily applied to peer reviews and inspections to
estimate latent defects in (software) products. In turn,
these values can be used to quantify the quality of the
process and to establish thresholds for repeating review
and testing practices.

• Fifth graders have demonstrated competence in using
Capture Recapture Method after a short introduction.
"Participants" in this session will get hands-on experience
in using CRM enabling them to help target effective defect-
removal processes in their organizations. This approach
can be used to support measurement-related CMMI® ML 2,
3, and 4 practices.

6

What’s the point?

This presentation deals with three challenges:
– our undiminished ability to generate product defects
– our deceptive reliance on testing to eliminate defects
– our inability to statistically predict undiscovered defects still

embedded in our software

And history indicates:
– Software defects – still plenty abundant
– Software and product quality – still plenty to talk about
– Inspections / Peer Reviews – still underutilized
– Asking the tough questions – still plenty of non-answers
– Capture Recapture Method – still plenty (defects) to find

7

Beyond Scope for Today:

• Major versus minor defect classifications (and holy wars)
• Peer reviews versus inspections (and holy wars)
• Which statistical package to use to evaluate defect data (and holy wars)
• Defect classifications (and holy wars)
• How to conduct inspections (and holy wars)
• Roles on inspections / peer reviews

• How to write better test plans
• How to perform root cause analysis
• How to write review scripts

8

Contributors to the defect dilemma

• Software quality problems result from defective products and defective usage
• Many root causes of poor product quality and poor usage exist
• Software defects are injected by product developers
• Even trained and experienced developers inject defects
• Too often, a quality assurance group is assembled to remove defects from

products
• Too often, a quality assurance group is chartered to develop comprehensive

testing activities to reduce defects
• Many product defects exist in the requirements and design of the product;

they cannot be removed during testing because they have become an
accepted part of the product specification

• An increasing reliance solely on testing for defect removal will not address
defects that emanate from requirements and design (but it will show lots of
“activity” and require lots of resources)

9

Recent Examples of Defects

Ford – 70,000 employee and former employee social
security numbers on a stolen computer

Justice Department – posted social security numbers
and personal data of persons involved in “cases” on
its web site

Marriott – Social security and credit card
numbers of 200,000+ employees and
customers missing

Sam’s Club – 600 customer credit card data
stolen in two weeks

10

More Recent Examples of Defects

TJ Maxx reported information from 45 million credit cards
stolen. informationweek; April 2, 2007

TJX credit card thief ordered to pay ~ $600,000 and
serve five years in prison. Original thieves have not been
caught. About $3M is losses is known to have occurred
from this crime. informationweek; September 17, 2007

TJX data breach may involve 94 million credit cards USA
Today; October 25, 2007

MGM – Computer glitch slows MGM Mirage check-ins
Workers resorted to manual check-in for thousands of
guests
“glitch” hits seven hotels – five on the LV strip
“first time” this “bug” has surfaced
Las Vegas Review-Journal; October 24, 2007

11

Software defects cost the U.S. $59.6B a year1

38 percent of polled organizations have no SQA program2

Software technicians in Panama are charged with second degree murder after
27 patients received overdoses of gamma rays; 21 have died in 40 months3

BMW, DaimlerChrysler, Mitsubishi, and Volvo experience product malfunctions
(engine stalls, gauges not illuminated, wiping intervals, wrong transmission
gears) due to software4

In the year 2000, the nctimes placed the cost of one virus at $10B5

After more than two years of delay, the state Department of Labor’s $13M
million computer system to process unemployment insurance claims and checks
still isn’t fully off the ground6

1 Informationweek, Behind the Numbers, March 29, 2004; pg 94
2 CIO, By the Numbers, December 1, 2003, pg 28
3 Baseline – The Project Management Center, We Did Nothing Wrong, March 4, 2004
4 Informationweek, Software Quality, March 15, 2004; pg 56
5 www.nctimes.com/news/050600/d.html
6 Albuquerque Journal; Computer A Real Labor For State; 6/04
Reference: Applying Lean Six Sigma to Software Engineering; International Function Point Users Group; Schofield;
September, 2004

And more . . .

http://www.nctimes.com/news/050600/d.html

12

• Developed by IBM in 1972 after three years of experimentation
• Referred to as a “Fagan inspection,” or “formal inspection”
• An expectation of formal inspection is to reduce rework (a lean six

sigma source of “waste” / muda)
• Not intended as a substitute for testing
• Enhanced to include causal analysis activity for defect prevention (a

CMMI® Maturity Level 5 Process Area)

Inspections – A response
(almost 40 years old!)

13

• Eliminate the undesired
• Identify what’s missing
• Determine if products fulfills intent
• Validate the verification process: value, efficiency, ROI
• Uncover process improvements
• Establish and sustain customer confidence

Why Inspect Product?

14

Assertions regarding defects
• The sooner a defect is detected (and removed) the lower the cost of repair and rework

• The later a defect is detected (and removed) the greater the consequence to cost and
the impact to schedule

• Verification (by the supplier) and validation (by the customer) are the two means for
identifying defects

• Defect discovery by the supplier is preferred

• Therefore, some verification (confirmed by defect injection and detection data) may be
needed as part of the development (or modification) of each product artifact

• All stakeholders related to a product from upper management to the final builder are
likely to inject defects. We all need to admit that we are recovering defect injectors

• Sources of defect removal include: personal reviews, inspections and peer reviews,
testing, and customer change requests

• We need to collect data from all defect removal activities if we want to eliminate defects
from products

• Defects found in testing evidence potential process or process execution failure; until
resolved we can only guarantee more defects in the future

15

More assertions regarding defects

• Only ½ of the defects in a product are removed by testing; this limitation is not
a reflection on the testing process.

• An organization’s equivalent defect-related data is better than that of other
organizations. The same is true of a project. The same is true for a person.

• Lessons learned from inspections, peer reviews, test results, and change
requests should trigger needed process changes to eliminate the source of
defects.

• Lessons learned from individuals should be shared with the team. Lessons
learned with the team should be shared with the organization. The opposite
flow exchanges should also occur: organization-to-team-to-individual.

• An inspection or peer review should be pre-requisite to the completion of the
deliverable (in software engineering this is much more than the code).

• Inspections and peer reviews reduce the TCO of products.

• An inverse relationship exists between quality and defect density.

16

• In what work product (or sub-assemblies) do we inject the most defects?
• What is the estimate of how many defects are typically found in a product

like this, using a review like this?
• In what verification activity do we detect the most defects?
• What is the average cost to repair a defect?
• What’s the most we ever spent on rework related to a defect?
• What are the types of defects we are most likely to find by work product?
• What steps have been taken to eliminate the source of defects, and what

was the measured result of that action?
• What training and organizational assets exist to assist new team members

with verification activities?
• What is the return on investment for verification activities; that is, what does

it cost to perform them and what would it cost if the product was released
with those defects?

• How many more defects remain undetected in the product?

Getting to know your process

17

Injected Defects for 12 Projects

0 20 40 60 80 100 120

Planning

Analysis

Design

Impl.

Deploy.

Ops.

Distribution of Defect Cost to Repair

0 20 40 60 80 100 120 140 160

Less than or equal to $5

Less than or equal to $20

Less than or equal to $100

More than $100

Cost not recorded

Defect Types

0 50 100 150 200

Aesthetic

Functional

Failure

Measure /
Record

Analyze

Some answers – measurement collection and
analysis (GP 3.2, MA, VER, VAL)

18

Defect summary by How and

Where discovered

Some answers – measurement collection and
analysis - (cont’d)

19

Defect summary by work
product

For defect removal, Tom Glib reports some inspection efficiencies as high as
88 percent. Jones, Software Quality, pg 215

Some answers – measurement collection and
analysis - (cont’d)

20
What does this association matrix REVEAL?

Planning Analysis Design Impl. Deploy. Ops.

Planning 109 4 8 8

Analysis 1 290 2

Design 3 9 476 2

Imple. 1 1 13 296

Deploy. 1 20

Ops. 3 24 2 30
Total

Injected 114 304 502 331 22 30
%

leakage 4 3 3 7 9

Phase Injected

Phase
Detected

Some answers – measurement collection and
analysis - (cont’d)

21

Given:

• Peer Review is performed in
Planning

• Peer Reviews are performed in
Analysis

• Peer Reviews are performed in
Design

• How is it that so many defects are
removed in Implementation?

• Does the organization need more
Peer Reviews in Planning &
Analysis?

• How effective are Design Peer
Reviews?

People Methods

Machine Material

Environment

Measurement

Effect

Look at Planning & Analysis

Defect Leakage by Phase and Cumulative Leakage

0

5

10

15

20

25

30

Plan
nin

g

Ana
lys

is

Des
ign

Im
ple

men
tatio

n

Dep
loy

ment

Ope
rat

ion
s

Pe
rc

en
t L

ea
ka

ge

Some answers – measurement collection and
analysis - (cont’d)

22

Special (Assignable) Cause removal required at CMMI® Level 4

How well the process is performed

Some answers – measurement collection and
analysis / higher level maturity (cont’d)

23

How many more defects remain
undetected in the product?

Barry Boehm – requirements defects that made their way into the field could cost
50-200 times as much to correct as defects that were corrected close to the point
of creation.1 The U.S. space program had two high-profile failures in 1999 with
software defects that cost hundreds of millions of dollars.

Capers Jones – reworking defective requirements, design, and code typically
consumes 40 to 50 percent or more of the total cost of most software projects and
is the single largest cost driver.2

Tom Gilb – half of all defects usually exist at design time3, (confirmed by Jones’s
data).

Capers Jones – as a rule of thumb, every hour you spend on technical reviews
upstream will reduce your total defect repair time from three to ten hours.4

O’Neill calculated the ROI for software inspections between four and eight to one.5

1. Boehm, Barry W. and Philip N. Papaccio. "Understanding and Controlling Software Costs," IEEE Transactions on Software
Engineering, v. 14, no. 10, October 1988, pp. 1462-1477.

2. Jones, Capers. Estimating Software Costs, New York: McGraw-Hill, 1998.
3. Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: Addison-Wesley, 1988.
4. Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs, N.J.: Yourdon Press, 1994.
5. O’Neill, Don; National Software Quality Experiment: Results 1992 – 1999: Software Technology Conference, Salt Lake City, 1995, 1996, 2000

24

Place a check mark in the intersecting cells for each defect found by each participant.
Count the defects that each engineer found (Counts for Engineer A, B, and C).
Column A: check and count all the defects found by the engineer who found the most unique

defects. 5
Column B: check and count all of the defects found by all of the other engineers. 4
Column C: check and count the defects common to columns A and B. 2
The estimated number of defects in the product is AB/C. Round to the nearest integer. (5 * 4) / 2 = 10
The number of defects found in the inspection is A+B-C. 5 + 4 – 2 = 7
The estimated number of defects remaining is the estimated number of defects in the product minus

the number found. (AB/C) – (A+B-C). 10 – 7 = 3

The capture-recapture method (CRM) has been used for decades by population biologists to accurately determine the number of
organisms studied. LaPorte RE, McCarty DJ, Tull ES, Tajima N., Counting birds, bees, and NCDs. Lancet, 1992, 339, 494-5.
See also Introduction to the Team Software Process; Humphrey; 2000; pgs. 345 – 350

An answer to the last question – How many
more defects remain in the product? (Latent defect estimation)

Use team “thresholds” to
determine whether or not to
repeat the Peer Review.

Defect No Engineer
Larry

Engineer
Curly

Engineer
Moe

“Column A” “Column B” “Column C”

1 √ √

2 √ √

3 √ √

4 √ √ √ √ √

5 √ √

6 √ √ √ √ √

7 √ √

Counts 5 2 2 5 4 2

25

Place a check mark in the intersecting cells for each defect found by each participant.
Count the defects that each engineer found (Counts for Engineer A, B, and C).
Column A: check and count all the defects found by the engineer who found the most unique

defects. 5
Column B: check and count all of the defects found by all of the other engineers. 7
Column C: check and count the defects common to columns A and B. 3
The estimated number of defects in the product is AB/C. Round to the nearest integer. (5 * 7) / 3 = 12
The number of defects found in the inspection is A+B-C. 5 + 7 – 3 = 9
The estimated number of defects remaining is the estimated number of defects in the product minus

the number found. (AB/C) – (A+B-C). 12 – 9 = 3

Defect No Engineer
Larry

Engineer
Curly

Engineer
Moe

“Column A” “Column B” “Column C”

1 √ √ √ √ √

2 √ √

3 √ √ √

4 √ √ √ √ √

5 √ √

6 √ √ √ √ √ √

7 √ √

Counts (L) 5 5 2 5 5 3

Counts (C) 5 5 2 5 6 4

What if . . .
Two engineers find the most defects? (pick either for column A and

complete the process)

26

Place a check mark in the intersecting cells for each defect found by each participant.
Count the defects that each engineer found (Counts for Engineer A, B, and C).
Column A: check and count all the defects found by the engineer who found the most unique

defects. 4
Column B: check and count all of the defects found by all of the other engineers. 4
Column C: check and count the defects common to columns A and B. 1
The estimated number of defects in the product is AB/C. Round to the nearest integer. (4 *4) / 1 = 16
The number of defects found in the inspection is A+B-C. 4 + 4 – 1 = 7
The estimated number of defects remaining is the estimated number of defects in the product minus

the number found. (AB/C) – (A+B-C). 16 – 7 = 9

Defect No Engineer
Larry

Engineer
Curly

Engineer
Moe

“Column A” “Column B” “Column C”

1 √ √

2 √ √

3 √ √

4 √ √ √ √ √

5 √ √

6 √ √

7 √ √

Counts (L) 4 3 1 4 4 1

What if . . .
Hardly any mutual defect finds?

27

Summary of key points:

Barry Boehm – requirements defects that made their way into the field could cost
50-200 times as much to correct as defects that were corrected close to the point
of creation.1 The U.S. space program had two high-profile failures in 1999 with
software defects that cost hundreds of millions of dollars.

Capers Jones – reworking defective requirements, design, and code typically
consumes 40 to 50 percent or more of the total cost of most software projects and
is the single largest cost driver.2

Tom Gilb – half of all defects usually exist at design time3, (confirmed by Jones’s
data).

Capers Jones – as a rule of thumb, every hour you spend on technical reviews
upstream will reduce your total defect repair time from three to ten hours.4

O’Neill calculated the ROI for software inspections between four and eight to one.5

28

CMMI®-Enabled Practices with CRM
Measurement and Analysis
SG 1 Align Measurement and Analysis Activities
SP 1.1 Establish Measurement Objectives (reduce or eliminate defects)
SP 1.2 Specify Measures (estimated number of latent defects)
SP 1.3 Specify Data Collection and Storage Procedures (peer reviews)
SP 1.4 Specify Analysis Procedures
SG 2 Provide Measurement Results
SP 2.1 Collect Measurement Data
SP 2.2 Analyze Measurement Data
SP 2.3 Store Data and Results
SP 2.4 Communicate Results

Verification – VER
SG 1 Prepare for Verification
SP 1.1 Select Work Products for Verification
SP 1.2 Establish the Verification Environment
SP 1.3 Establish Verification Procedures and Criteria
SG 2 Perform Peer Reviews
SP 2.1 Prepare for Peer Reviews
SP 2.2 Conduct Peer Reviews
SP 2.3 Analyze Peer Review Data
SG 3 Verify Selected Work Products
SP 3.1 Perform Verification
SP 3.2 Analyze Verification Results

29

CMMI®-Enabled Practices with CRM
Organizational Process Performance
SG 1 Establish Performance Baseline and Models
SP 1.1 Select Processes
SP 1.2 Establish Process-Performance Measures
SP 1.3 Establish Quality and Process-Performance Objectives
SP 1.4 Establish Process-Performance Baselines
SP 1.5 Establish Process-Performance Models

Quantitative Project Management
SG 1 Quantitatively Manage the Project
SP 1.1 Establish the Project’s Objectives
SP 1.2 Compose the Defined Process
SP 1.3 Select the Subprocesses that Will Be Statistically Managed
SP 1.4 Manage Project Performance
SG 2 Statistically Manage Subprocess Performance
SP 2.1 Select Measures and Analytic Techniques
SP 2.2 Apply Statistical Methods to Understand Variation
SP 2.3 Monitor Performance of the Selected Subprocesses
SP 2.4 Record Statistical Management Data

30

CMMI®-Enabled Practices with CRM

Causal Analysis and Resolution
SG 1 Determine Causes of Defects
SP 1.1 Select Defect Data for Analysis
SP 1.2 Analyze Causes
SG 2 Address Causes of Defects
SP 2.1 Implement the Action Proposals
SP 2.2 Evaluate the Effect of Changes
SP 2.3 Record Data

Generic Practices enabled by CRM
GP 3.2 Collect Improvement Information#
GP 4.1 Establish Quantitative Objectives for the Process#
GP 4.2 Stabilize Subprocess Performance#

31

CMMI® Process Areas, Goals, Practices,
and more

