
ITMPI005

Repeatable and Relevant Functional
Software Measurement using Function

Point Analysis

October 13, 2010

Measurement Workshop 2010

Colorado Springs, Colorado

Joe Schofield
jrschof@sandia.gov

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2

(Somewhat) Related Presentations &
Publications

Function

Points &

Estimating

Function Point Analysis – A Cornerstone to Estimating; ISMA Cinco!, Sao Paulo, Brazil; September 14, 2010

Why You Need a Certified Function Point Specialist –and lingering questions you can only pretend to answer; ISMA paper; September 2010

The Use of Function Points for Software Measurement & Estimation; Measurement Workshop; Ft. Worth, TX., 2007

Lines of

Code

Counting Lines of Code: Virtually Worthless for Estimating and Software Sizing, IT Metrics and Productivity Journal; December, 2009

Is There a Weakest Link After All?, IT Metrics and Productivity Journal; December, 2009

Is There Value to using Lines of Code for Measuring People After All?, IT Metrics and Productivity Journal; December, 2009

Lines of Code - Statistically Unreliable for Software Sizing?; Computer Aid, Inc.; Webinar; October 14, 2008

The Statistical Case Against the Case for using Lines of Code in Software Estimation; 4th World Congress on Software Quality; Bethesda,

MD.; September 17, 2008

The Statistically Unreliable Nature of Lines of Code; CrossTalk, April 2005 (Cited by NIST Metrics and Measures

http://samate.nist.gov/index.php/Metrics_and_Measures)

Defect-

icide

Estimating Latent Defects Using Capture-Recapture: Lessons from Biology; Arlington, VA.; 2008 International Software Measurement and

Analysis (ISMA) Conference; September 18, 2008

Beyond Defect Removal: Latent Defect Estimation with Capture Recapture Method; CrossTalk, August 2007 (reprinted in IFPUG’s

MetricViews, Winter 2008)

Latent Defect Estimation - Maturing Beyond Defect Removal using Capture-Recapture Method; QAI QAAM Conference; September 10, 2008

Defect Collection & Analysis – The Basis of Software Quality Improvement; ISMA Conference, September, 2006

Defect Management through the Personal Software ProcessSM; CrossTalk, September 2003

Lean Six

Sigma

Leaning Lean Six Sigma for Results; ISMA; September, 2009

When Did Six Sigma Stop Being a Statistical Measure?; CrossTalk, April 2006

Lean Six Sigma - Real Stories from Real Practitioners; Albuquerque, N.M.; N.M. SPIN; August 2005

Six Sigma & Software Engineering: Complement or Collision; Albuquerque, N.M.; N.M. SPIN; August, 2004

Applying Lean Six Sigma to Software Engineering; IFPUG Conference; September, 2004

Process

Improve-

ment

‘Manda, Panda, and the CMMI(R); Las Vegas, NV.; 2007; ISMA Conference; September 14, 2007

Amplified Lessons from the Ant Hill – What Ants and Software Engineers Have in Common; IFPUG Conference, Sept., 2003

Lessons from the Ant Hill - What Ants and Software Engineers Have in Common; Information Systems Management, Winter 2003

The Team Software ProcessSM – Experiences from the Front Line; Software Quality Forum; Arlington, Virginia, March; 2003

Measuring Software Process Improvement - How to Avoid the Orange Barrels; System Development, December 2001

Usable Metrics for Software Improvement within the CMM; Software Quality Forum 2000; Santa Fe, N.M.; April, 2000

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

3

Quick Overview . . .

• We still need improvement in sizing software products and planning

software projects

• How Function Point Analysis addresses significant aspects of this need

• Lines of code as a sizing measure has limited potential to address this

need

• Five function point types

• Taking a “Crack” at identifying function points

• Estimating with Function Points, from planning to deployment (and

beyond)

• Mitigating the sources of variance in estimating and performance – an

actual exercise

• Models and prediction

• The International Function Point Users Group

• Summary of thoughts presented

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

Standish Chaos Report
Challenged projects suffer from:

1. Lack of User Input

2. Incomplete Requirements and

Specifications

3. Changing Requirements and

Specifications

4. Lack of Executive Support

5. Technology Incompetence
(DTRA, XML?)

6. Lack of Resources

7. Unrealistic Expectations

8. Unclear Objectives

9. Unrealistic Time Frames

10. New Technology

Impaired (cancelled) projects
suffer from:

1. Incomplete Requirements

2. Lack of User Involvement

3. Lack of Resources

4. Unrealistic Expectations

5. Lack of Executive Support

6. Changing Requirements

and Specifications

7. Lack of Planning

8. Didn’t Need it Any Longer

9. Lack of IT Management

10. Technology Illiteracy

IEEE Spectrum, Robert N.
Charette, September, 2005

Why Software Fails

1. Unrealistic or unarticulated

project goals

2. Inaccurate estimates of

needed resources

3. Badly defined system

requirements

4. Poor reporting of the

project’s status

5. Unmanaged risk

6. Poor communication among

customer, developers, and

users

7. Use of immature technology

8. Inability to handle the

project’s complexity

9. Sloppy development

practices

10. Poor project management

Why Projects Stumble

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

4

5

How Function Point Analysis Helps . . .

• As an ISO standard (ISO/IEC 20926 SOFTWARE ENGINEERING) Function

Point Analysis (FPA) provides a basis for repeatable and consistent sizing

• Supported by IFPUG and its membership community, FPA remains viable

as new technologies and approaches to software development evolve (case

studies, books, conferences, workshops, certifications, and, the “standard”)

• Functional sizing is not influenced by programming language, in-house or

COTS development

• Functional sizing is not impacted by development approach: outsourcing,

in-sourcing, iterative, incremental, scrum, or agility

• Functional sizing can be approximated at the first sighting of customer

requirements, estimated with a design, and counted upon delivery

• FPA can be used to track requirements volatility over the life of a project

(FPs added, changed, deleted) to size requirements creep

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

Products Circa 2009 Circa 2018 Daily usage

Available Available (hours)

Home computer 1,000,000 2,000,000 2.5

Automobile 300,000 750,000 3.0

Smart appliances 100,000 750,000 24.0

Televisions 25,000 125,000 4.0

Home alarms 5,000 15,000 24.0

Home music 7,500 20,000 2.5

I-Phone 20,000 30,000 3.0

Digital camera 2,000 5,000 0.5

Electronic books 10,000 20,000 2.5

Social networks 25,000 75,000 2.5

TOTAL 1,494,500 3,790,000 20.5

Using Function Point Metrics For Software Economic Studies, Capers Jones, January 2010

Examples of the diverse usage of FPA
(from Capers Jones)

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

!

6

Lines of code “This term is highly ambiguous and is used for many different

counting conventions. The most common variance concerns whether

physical lines of logical statements comprise the basic elements of the

metrics. Note that for some modern programming languages that use

button controls, neither physical lines nor logical statements are relevant.”
Software Quality, Capers Jones, International Thomson Computer Press 1997, pg. 333.

Direct conversion from source code volumes to an equivalent count of

function points is termed backfiring. Although the accuracy of backfiring is

not great, because individual programming styles can cause wide variation

in source code counts, it is easy and popular. Estimating Software Costs, Capers Jones,

McGraw-Hill, 1998, pg. 191

Software Sizing Problems. “14. Validating or challenging the rules for

backfiring lines of code to function points.” Estimating Software Costs, . . . , pg. 322

Of software projects measured in 2001 backfiring was used the most for

determining size of product, some 75,000 times. LOCs were used 25,000

times. (130,000 projects in survey) Software Measurement and Metrics: The State of the Art in

2001; Capers Jones, Software Productivity Research, Inc., October 2001

Lines of code (LOCs) and backfiring
can’t work

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

7

Actual Data from Three Languages

• Same exact software, counted the

same way, accepted by the same

customer

• Largest instance variance is 22:1

• Smallest instance variance is 1.5:1

• Average variance is ~6:1

• All of these variances would be

intolerable for cost or schedule
Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

8

Bigger (code) is not better – it’s bigger
(size does matter!)

• Assuming a constant defect injection rate, bigger code means more defects
(some would argue that bigger code increases the defect injection rate), some which are eliminated in reviews if

they are conducted, only a few through testing [1] though downstream and more costly; still others escape into the

product. Corrections to code tend to beget still more defects.

• Bigger code means more code to change when change is introduced, and

additional opportunity to inject still more defects. Humphreys has found that small code

changes are 40 times more likely to introduce new defects than original development work. [2]

• Bigger code is likely the result of less sophisticated design, a sign of other

potential issues. Jones notes that delivery defects that originate in requirements and design far outnumber

those from coding. [3]

• Bigger code is less likely to be a candidate for reuse which introduces another whole

series of issues related to product quality and productivity.

• Bigger code has implications for software that is heavily constrained by size

limits and execution speed.

• If you are the customer paying for size of product or developer’s time, you might

take exception to 10 of 37 largest providers developing 11,493 lines of the code when the ten shortest programmer

totals for the same product was merely 5870 lines of code. If you are the customer, it is highly unlikely that your

provider will either have this type of data for comparison and even more unlikely that they would share it they knew

to look for it!

1. Defect Management through the Personal Software Process(SM); CrossTalk, September 2003
2. A Discipline for Software Engineering; Watts Humphrey; Addison-Wesley; 1995 pg. 84

3. Software Quality: Analysis and Guidelines for Success; Capers Jones; International Thomson Computer Press; 1997

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

9

http://www.stsc.hill.af.mil/crosstalk/2003/09/index.html
http://www.stsc.hill.af.mil/crosstalk/2003/09/index.html

10

Definitions of Function Point Data
Functions (two types):

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

External Interface File (EIF) – user recognizable group of logically related

data or control information, which is referenced by the application being

measured, but which is maintained within the boundary of another application

(Joe’s abbreviated description – a data structure which is used to access or

retrieve data updated by the system)

Internal Logical File (ILF) – user recognizable group of logically related

data or control information maintained within the boundary

of the application being measured (Joe’s abbreviated description – a data

structure which is used to hold data updated by the system)

Ref: Function Point Counting Practices Manual 4.3.1; January, 2010

11

Definitions of Functional Components are of
three types:

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

External Input (EI) – elementary process that processes data or control information sent

from outside the boundary (Joe’s abbreviated description – CUD)

External Inquiry (EQ) – elementary process that sends data or control information

outside the boundary (Joe’s abbreviated description – R)

External Output (EO) – elementary process that sends data or control information

outside the boundary and includes additional processing logic beyond that of an External

Inquiry (Joe’s abbreviated description – C or U or D, R)

Ref: Function Point Counting Practices Manual 4.3.1; January, 2010

12

Take a Crack at these Apps (using previous definitions)

Application ILF EIF EI EO EQ
Messages

SMS

Contacts

Calendar

Browser

Vodafone

Vodafone

Media

Clock

Camera

Instant Messaging

Applications

Games

Downloads

Setup

Help

“Green phone”

Blackberry Home

Back

“Red phone”

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

13

My Crack

Application ILF EIF EI EO EQ
Messages ? 3

SMS

Contacts ? 3

Calendar ? 3

Browser

Vodafone

Vodafone

Media

Clock

Camera

Instant Messaging

Applications

Games

Downloads ?

Setup

Help

“Green phone” ?

Blackberry Home X X X X X

Back X X X X X

“Red phone”

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

14

A sub-menu down . . .

Task ILF EIF EI EO EQ

Mobile Network

Wi-Fi

Bluetooth

Services Status

Set-up Wi-Fi Network

Set Up Bluetooth

Mobile Network Options

Wi-Fi Options

Bluetooth Options

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

15

A sub-menu down . . .

Task ILF EIF EI EO EQ

Mobile Network

Wi-Fi

Bluetooth

Services Status

Set-up Wi-Fi Network X X X X X

Set Up Bluetooth X X X X X

Mobile Network Options X X X X X

Wi-Fi Options X X X X X

Bluetooth Options X X X X X

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

16

(now that we know what function points are) Estimating and
measuring throughout the product lifecycle

1. Approximate the size as soon as requirements are discovered (not

merely when baselined, accepted, or approved). We now have an idea

of the size of the product / house.

More approximations are preferred – statistical cone of uncertainty.

Function Point Approximation Worksheet

6 2 4 1 3 (Do NOT change the formulas to the left or for j22)

Data Functions Your Approximated Function Point Count

Logical Files Create Update Delete Read 100

Hotels y

Car Rentals y y

Trips y y y

Travelers y

Reservations y y

Airlines y

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

Hurricane Katrina

Provides a likely path (outcome)

and margin of error

17

Use multiple models (QDE) and historic data

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

Approximate based on historical

performance data (this assumes

that such data is collected, stored,

and analyzed).

See also CMMI-DEV® v1.2:

• Measurement and Analysis, SG2

• Organizational Process

Performance, SG1

http://upload.wikimedia.org/wikipedia/commons/7/78/2005_Atlantic_hurricane_season_map.png

18

2. Estimate when size is understood and resources are made available to

the project

3. Count, record, and analyze the size, cost, and schedule of the project.
(can be used for future estimations)

 Function Point Counting Worksheet

prepopulated with FPAW data

Low Average High Total 14 System Characteristics (use IFPUG Counting Practices Manual 4.2)

1Internal Logical Files 6 42 Data Communications Online Update

Distributed Data Processing Complex Processing
2External Interface Files 0 Performance Reusability

Heavily Used Configuration Installation Ease
3External Inputs 7 28 Transaction Rate Operational Ease

Online Data Entry Multiple Sites
3External Outputs 6 30 End-User Efficiency Facilitate Change

3External Inquiries 0

Total Unadjusted Function Points (UFPs) 100

4Total Function Points 65

Usage:

 Contact the PPQA Group immediately if you don't know how to complete any of the information on this worksheet!

Use this worksheet to estimate Function Points given identified SILC artifacts AND upon project completion to derive an "actual" size.

 Enter the number of low, average, & high Function Point types (ILFs, EIFs, EIs, EOs, EQs) - The worksheet will generate the totals
1These values are derivable from the information model.
2These values are derivable from the external interface model.
3These values are derivable from the presentation layer.
4Use this number for estimating the Function Point size on the Estimation Worksheet.

 Enter a value between 0 and 5 for each of the 14 System Characteristics - The worksheet will sum these as multiply them against the UFPs

 (Optionally) Enter additional values below to calculate some key project metrics:

Enter project labor costs $ per FP: 0

Enter project defects (at implementation) Defect per FP: 0.00

Enter project labor hours Cycle time per FP 0.00

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

Estimating and measuring throughout the
product lifecycle (continued)

19

2010 DCG Survey Results Performance Measurement; David Consulting Group; 2010

Why you should care . . .

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

20

Get closer to the right size of the product . . .

Elicitation with the customer is a discussion you will have anyhow (the
spreadsheet is merely a way to record it)

Do you have organizational measures on which to predict cost and
hours / schedule once you have a size?

Do you have multiple ways of estimating that might show you the
overlapping space and raise confidence?

Do you contribute your measures to an organizational repository for
your benefit and that of others?

Defect re-work is already in your organizational productivity data;
what happens if you eliminate much of that re-work?

Closing thoughts . . .

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

21

IFPUG is the International Function Point Users Group

IFPUG is a volunteer non-profit organization

IFPUG maintains the standard(s)

• Counting Practices Manual 4.3 (2010)

• Certification Process and automated exam in several languages

Provides conferences, workshops, white papers

Supported by numerous service providers for training, consulting,
counting

Has a voting membership across six continents

Has a fulltime “home office”

Offers individual and organizational memberships

About IFPUG (http://www.ifpug.org/). . .

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

22

[1] Certified Function Point Specialist Examination Guide; Garmus, et. al.;

2010; ISBN 978-1-4200-7637-0

[2] http://en.wikipedia.org/wiki/Function_point

[3] http:www.ifpug.org

[4] Beyond Defect Removal: Latent Defect Estimation with Capture Recapture Method;

CrossTalk; August, 2007

[5] Capers Jones has reported on a survey of organizations that used lines of code as a size for

software; one-third of the participants counted comments as lines of code, one-third did

not include lines of code in their counts, and the other one-third didn’t know if they counted

comments or not

[6] The Statistically Unreliable Nature of Lines of Code; CrossTalk, April, 2005

[7] ISO / IEC 20926:2009

[8] http://www.ifpug.org/certification/cfps.htm

[9] Chaos Summary 2009; Standish Group, 2009

[10] A Discipline for Software Engineering; Watts Humphrey; Addison-Wesley; 1995 pg. 84

[11] Why Software Fails; Robert N. Charette; IEEE Spectrum; September, 2005

[12] Counting Lines of Code: Virtually Worthless for Estimating and Software Sizing, IT Metrics

and Productivity Journal; December, 2009

[13] Is There a Weakest Link After All?, IT Metrics and Productivity Journal; December, 2009

[14] Is There Value to using Lines of Code for Measuring People After All?, IT Metrics and

Productivity Journal; December, 2009

[15] 2010 DCG Survey Results Performance Measurement; David Consulting Group; 2010

Additional References

Repeatable and Relevant Functional Software
Measurement using Function Point Analysis :
Schofield : 2010 : Measurement Workshop

http://en.wikipedia.org/wiki/Function_point

