A Function Point Overview with Potential Application in Systems Engineering

March 6, 2013

University of Arizona

Joe Schofield

CFPS, CSMS, CQA, CMMI® Certified Instructor joescho@joejr.com President, International Function Point Users Group

Related Presentations & Publications

Function Points & Estimating	Function Points, Use Case Points, Story Points: Observations from a Case Study; CrossTalk; May / June, 2013 A Function Point Overview with Potential Application in Systems Engineering; University of Arizona, March 6, 2013 Measurement Challenges, Obstacles, and Victories; Metricas 2012; Sao Paulo, Brazil; 11/29/2012 Ten Tips for Prematurely Terminating Your Measurement Program; ISMA7; Phoenix, AZ.; 10/30/2012 Function Point Analysis – A Cornerstone to Estimating; ISMA Cinco!, Sao Paulo, Brazil; September 14, 2010 Why You Need a Certified Function Point Specialist –and lingering questions you can only pretend to answer; ISMA paper; September 2010 The Use of Function Points for Software Measurement & Estimation; Measurement Workshop; Ft. Worth, TX., 2007
Lines of Code	Counting Lines of Code: Virtually Worthless for Estimating and Software Sizing, IT Metrics and Productivity Journal; December, 2009 Is There a Weakest Link After All?, IT Metrics and Productivity Journal; December, 2009 Is There Value to using Lines of Code for Measuring People After All?, IT Metrics and Productivity Journal; December, 2009 Lines of Code - Statistically Unreliable for Software Sizing?; Computer Aid, Inc.; Webinar; October 14, 2008 The Statistical Case Against the Case for using Lines of Code in Software Estimation; 4th World Congress on Software Quality; Bethesda, MD.; September 17, 2008 The Statistically Unreliable Nature of Lines of Code; CrossTalk, April 2005 (Cited by NIST Metrics and Measures http://samate.nist.gov/index.php/Metrics_and_Measures)
Defect- icide	Estimating Latent Defects Using Capture-Recapture: Lessons from Biology; Arlington, VA.; 2008 International Software Measurement and Analysis (ISMA) Conference; September 18, 2008 Beyond Defect Removal: Latent Defect Estimation with Capture Recapture Method; CrossTalk, August 2007 (reprinted in IFPUG's MetricViews, Winter 2008) Latent Defect Estimation - Maturing Beyond Defect Removal using Capture-Recapture Method; QAI QAAM Conference; September 10, 2008 Defect Collection & Analysis - The Basis of Software Quality Improvement; ISMA Conference, September, 2006 Defect Management through the Personal Software Process SM ; CrossTalk, September 2003
Lean Six Sigma	Leaning Lean Six Sigma for Results; ISMA; September, 2009 When Did Six Sigma Stop Being a Statistical Measure?; CrossTalk, April 2006 Lean Six Sigma - Real Stories from Real Practitioners; Albuquerque, N.M.; N.M. SPIN; August 2005 Six Sigma & Software Engineering: Complement or Collision; Albuquerque, N.M.; N.M. SPIN; August, 2004 Applying Lean Six Sigma to Software Engineering; IFPUG Conference; September, 2004
Process Improve- ment	'Manda, Panda, and the CMMI(R); Las Vegas, NV.; 2007; ISMA Conference; September 14, 2007 Amplified Lessons from the Ant Hill – What Ants and Software Engineers Have in Common; IFPUG Conference, Sept., 2003 Lessons from the Ant Hill - What Ants and Software Engineers Have in Common; Information Systems Management, Winter 2003 The Team Software Process SM – Experiences from the Front Line; Software Quality Forum; Arlington, Virginia, March; 2003 Measuring Software Process Improvement - How to Avoid the Orange Barrels; System Development, December 2001 Usable Metrics for Software Improvement within the CMM; Software Quality Forum 2000; Santa Fe, N.M.; April, 2000

Quick Overview . . .

- What are Function Points?
- When are Function Points useful in the product life cycle (hint: from planning to retirement)?
- What is IFPUG?
- Five function point types and their values
- An example, of course
- Function Points and estimating

How Function Point Analysis Helps . . .

- As an ISO standard (ISO/IEC 20926 SOFTWARE ENGINEERING) Function Point Analysis (FPA) provides a basis for repeatable and consistent sizing
- Supported by IFPUG and its membership community, FPA remains viable as new technologies and approaches to software development evolve (case studies, books, conferences, workshops, certifications, and, the "standard")
- Functional sizing is not influenced by programming language, in-house or COTS development
- Functional sizing is not impacted by development approach: outsourcing, in-sourcing, iterative, incremental, scrum, or agility
- Functional sizing can be approximated at the first sighting of customer requirements, estimated with a design, and counted upon delivery
- FPA can be used to track requirements volatility over the life of a project (FPs added, changed, deleted) to size requirements creep

About IFPUG (http://www.ifpug.org/). . .

IFPUG is the International Function Point Users Group

IFPUG is a volunteer non-profit organization

IFPUG maintains the standard(s)

- Counting Practices Manual 4.3.1 (2010)
- Certification Process (CFPS / CFPP) and automated exam in several languages

Provides conferences, workshops, white papers

Supported by numerous service providers for training, consulting, counting

Has a voting membership across six continents

Has a fulltime "home office"

Offers individual and organizational memberships

Why Projects Stumble

Standish Chaos Report Challenged projects suffer from:

- 1. Lack of User Input
- 2. Incomplete Requirements and Specifications
- 3. Changing Requirements and Specifications
- 4. Lack of Executive Support
- 5. Technology Incompetence (DTRA, XML?)
- 6. Lack of Resources
- 7. Unrealistic Expectations
- 8. Unclear Objectives
- 9. Unrealistic Time Frames
- 10. New Technology

Impaired (cancelled) projects suffer from:

- 1. Incomplete Requirements
- 2. Lack of User Involvement
- 3. Lack of Resources
- 4. Unrealistic Expectations
- 5. Lack of Executive Support
- 6. Changing Requirements and Specifications
- 7. Lack of Planning
- 8. Didn't Need it Any Longer
- 9. Lack of IT Management
- 10. Technology Illiteracy

IEEE Spectrum, Robert N. Charette, September, 2005 Why Software Fails

- 1. Unrealistic or unarticulated project goals
- 2. Inaccurate estimates of needed resources
- 3. Badly defined system requirements
- 4. Poor reporting of the project's status
- 5. Unmanaged risk
- 6. Poor communication among customer, developers, and users
- 7. Use of immature technology
- 8. Inability to handle the project's complexity
- 9. Sloppy development practices
- 10. Poor project management

Function Points come from two sources:

Data Functions

- Internal Logical Files (ILFs)
- External Interface Files (EIFs)

Transactional Functions

- External Input (Els)
- External Output (EOs)
- External Inquiry (EQs)

Ref: Function Point Counting Practices Manual 4.3.1; January, 2010

Definitions of Function Point Data Functions (two types):

External Interface File (EIF) – user recognizable group of logically related data or control information, which is referenced by the application being measured, but which is maintained within the boundary of another application (Joe's abbreviated description – a data structure which is used to access or retrieve data updated by the system)

Internal Logical File (ILF) – user recognizable group of logically related data or control information maintained within the boundary of the application being measured (Joe's abbreviated description – a data structure which is used to hold data updated by the system)

Ref: Function Point Counting Practices Manual 4.3.1; January, 2010

Definitions of Functional Components are of three types:

"CRUD" - create, read, update, delete

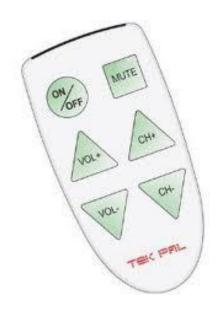
External Input (EI) – elementary process that processes data or control information sent from outside the boundary (Joe's abbreviated description – CUD)

External Inquiry (EQ) – elementary process that sends data or control information outside the boundary (Joe's abbreviated description – R)

External Output (EO) – elementary process that sends data or control information outside the boundary and includes additional processing logic beyond that of an External Inquiry (Joe's abbreviated description – C or U or D, R)

Ref: Function Point Counting Practices Manual 4.3.1; January, 2010

Take a Crack at these Apps (using previous definitions)



1st Crack (but need a systems engineer!)

Application	ILF	EIF	EI	EO	EQ
On/ Off			1		
Mute			1		
Volume +	1		1		
Volume -			1		
CH +	1		1		
CH -			1		

1st Crack (but need a systems engineer to validate!)

	LOW	AVG.	HIGH
ILF	7	10	15
EIF	5	7	10
EI	3	4	6
EO	4	5	7
EQ	3	4	6

Sum of the functional size – (6 (low) Els x 3) + (2 (low ILFs) x 7)
=
$$(6 \times 3) + (2 \times 7)$$

= $18 + 14$
= 32

We have a number (32) - so what?

Consider metrics (assuming you collect them) for:

- Productivity: Function Points per Person Month
- Cost: \$ per Function Point
- Defect Removal Efficiency: Defects per Function Point
- "Velocity:" Delivery time per Function Point

 Sustainability: # of Function Points supported per person (operations & support)

Examples of the diverse usage of FPA

(from Capers Jones)

Products	Circa 2009	Circa 2018	Daily usage	
	Available	Available	(hours)	
Home computer	1,000,000	2,000,000	2.5	
Automobile	300,000	750,000	3.0	
Smart appliances	100,000	750,000	24.0	
Televisions	25,000	125,000	4.0	
Home alarms	5,000	15,000	24.0	
Home music	7,500	20,000	2.5	
I-Phone	20,000	30,000	3.0	
Digital camera	2,000	5,000	0.5	
Electronic books	10,000	20,000	2.5	
Social networks	25,000	75,000	2.5	
TOTAL	1,494,500	3,790,000	20.5	

Using Function Point Metrics For Software Economic Studies, Capers Jones, January 2010

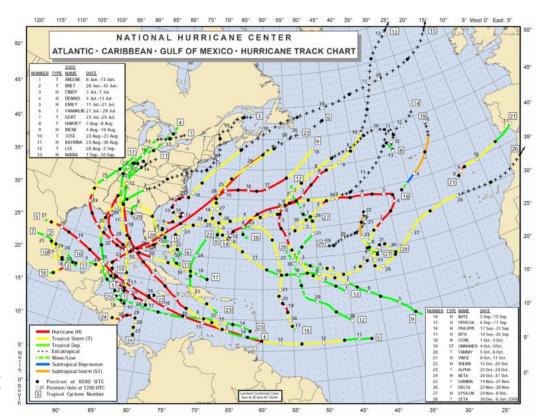
(now that we know what function points are) Estimating and measuring throughout the product lifecycle

1. Approximate the size as soon as requirements are discovered (not merely when baselined, accepted, or approved). We now have an idea of the size of the product.

More approximations are preferred – statistical cone of uncertainty.

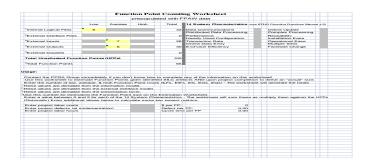
Hurricane Katrina

Provides a likely path (outcome) and margin of error



Use multiple models (QDE) and historic data

Approximate based on historical performance data (this assumes that such data is collected, stored, and analyzed).


See also CMMI-DEV® v1.3:

- Measurement and Analysis, SG2
- Organizational Process Performance, SG1

Estimating and measuring throughout the product lifecycle (continued)

2. Estimate when size is understood and resources are made available to the project

3. Count, record, and analyze the size, cost, and schedule of the project. (can be used for future estimations)

Closing thoughts . . .

Others working on the use of Function Point-like measures for systems engineering and INCOSE include Ricardo Valerdi, University of Arizona and Mauricio Aguiar, President of TI Metricas, Brazil. http://www.lit.inpe.br/seday

Automated Function Point counting—it's coming

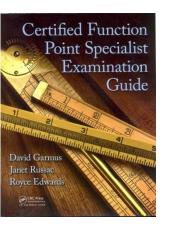
Use Function Points to get closer to the right size of the product; improve estimates . . .

Elicitation with the customer is a discussion you will have anyhow (the spreadsheet is merely a way to record it)

Do you have organizational measures on which to predict cost and hours / schedule once you have a size?

Do you have multiple ways of estimating that might show you the overlapping space and raise confidence?

Do you contribute your measures to an organizational repository for your benefit and that of others?


Defect re-work is already in your organizational productivity data; what happens if you eliminate much of that re-work?

CMMI Topics

- History / motive of model(s): SW-CMM, HW-CMM, SE-CMM, P-CMM,
 CMMI-DEV, SVC, ACQ
- Maturity and Capability Levels Staged and Continuous
- Process areas
- GPs / GGs / SPs / SGs
- Institutionalization the leveraging of ______, _____, and ______
- · SCAMPIS
- Misconceptions: waterfall-based, suitable for large corporations only, used by defense industry & government

Additional References

- [1] Certified Function Point Specialist Examination Guide; Garmus, et. al.; 2010; ISBN 978-1-4200-7637-0
- [2] http://en.wikipedia.org/wiki/Function_point
- [3] http:www.ifpug.org
- [4] Beyond Defect Removal: Latent Defect Estimation with Capture Recapture Method; CrossTalk; August, 2007
- [5] Capers Jones has reported on a survey of organizations that used lines of code as a size for software; one-third of the participants counted comments as lines of code, one-third did not include lines of code in their counts, and the other one-third didn't know if they counted comments or not
- [6] The Statistically Unreliable Nature of Lines of Code; CrossTalk, April, 2005
- [7] ISO / IEC 20926:2009
- [8] http://www.ifpug.org/certification/cfps.htm
- [9] Chaos Summary 2009; Standish Group, 2009
- [10] A Discipline for Software Engineering; Watts Humphrey; Addison-Wesley; 1995 pg. 84
- [11] Why Software Fails; Robert N. Charette; IEEE Spectrum; September, 2005
- [12] Counting Lines of Code: Virtually Worthless for Estimating and Software Sizing, IT Metrics and Productivity Journal; December, 2009
- [13] Is There a Weakest Link After All?, IT Metrics and Productivity Journal; December, 2009
- [14] Is There Value to using Lines of Code for Measuring People After All?, IT Metrics and Productivity Journal; December, 2009
- [15] 2010 DCG Survey Results Performance Measurement; David Consulting Group; 2010
- [16] CMMI-DEV http://www.sei.cmu.edu/cmmi/solutions/dev/

Briefly about Joe . . .

Joe Schofield is the President of the International Function Point Users Group. He retired from Sandia National Laboratories as a Distinguished Member of the Technical Staff after a 31-year career. During twelve of those years he served as the SEPG Chair for an organization of about 400 personnel which was awarded a SW-CMM® Level 3. He continued as the migration lead to CMMI® Level 4 until his departure. Joe has facilitated over 100 teams in the areas of software specification, team building and organizational planning by using lean six sigma and business process reengineering.

Joe has taught graduate courses since 1990 and is a licensed girl's mid-school basketball coach. He has over 80 published papers, conference presentations and keynotes—including contributions to the books IT Measurement, Certified Function Point Specialist Exam Guide, The Economics of Software Quality, and a software measurement book. He is a SEI-authorized Instructor for the Introduction to the CMMI® and two other SEI courses, Certified Software Quality Analyst, Certified Function Point Specialist, and a Certified Software Measurement Specialist.

Joe is a frequent presenter in the Software Best Practices Webinar Series sponsored by Computer Aid, Inc. Joe completed his Master's degree in MIS at the University of Arizona in 1980. By "others" he is known as a husband, father, and grandfather.

